
Chapter 1: Limits and Their Properties

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

September 25, 2021

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 1 / 101



Table of Contents

1 A preview of calculus

2 Finding limits graphically and numerically

3 Evaluating limits analytically

4 Continuity and one-sided limits

5 Infinite limits

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 2 / 101



Table of Contents

1 A preview of calculus

2 Finding limits graphically and numerically

3 Evaluating limits analytically

4 Continuity and one-sided limits

5 Infinite limits

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 3 / 101



What is calculus?

Calculus is the mathematics of change. For instance, calculus is the
mathematics of velocities, accelerations, tangent lines, slopes, areas,
volumes, arc lengths, centroids, curvatures, and a variety of other
concepts that have enabled scientists, engineers, and economists to
model real-life situations.

Although precalculus mathematics also deals with velocities,
accelerations, tangent lines, slopes, and so on, there is a fundamental
difference between precalculus mathematics and calculus.

Precalculus mathematics is more static, whereas calculus is more
dynamic.

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 4 / 101



Here are some examples.

1 An object traveling at a constant velocity can be analyzed with
precalculus mathematics. To analyze the velocity of an accelerating
object, you need calculus.

2 The slope of a line can be analyzed with precalculus mathematics. To
analyze the slope of a curve, you need calculus.

3 The curvature of a circle is constant and can be analyzed with
precalculus mathematics. To analyze the variable curvature of a
general curve, you need calculus.

4 The area of a rectangle can be analyzed with precalculus
mathematics. To analyze the area under a general curve, you need
calculus.
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So, one way to answer the question “What is calculus?” is to say that
calculus is a “limit machine” that involves three stages.

The first stage is precalculus mathematics, such as the slope of a line
or the area of a rectangle.

The second stage is the limit process, and the third stage is a new
calculus formulation, such as a derivative or integral.

Precalculus mathematics =⇒ Limit process =⇒ Calculus
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Figure 1: Without calculus versus with differential calculus.
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Figure 2: Without calculus versus with integral calculus.
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The tangent line problem

The notion of a limit is fundamental to the study of calculus.

The following brief descriptions of two classic problems in
calculus—tangent line problem and area problem — should give you
some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function f and a point P
on its graph and are asked to find an equation of the tangent line to
the graph at point P, as shown in Figure 3.

Figure 3: The tangent line to the graph of f at a point.
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Except for cases involving a vertical tangent line, the problem of
finding the tangent line at a point P is equivalent to finding the slope
of the tangent line at P.

You can approximate this slope by using a line through the point of
tangency and a second point on the curve, as shown in Figure 4a.
Such a line is called a secant line.

If P(c , f (c)) is the point of tangency and Q(c + ∆x , f (c + ∆x)) is a
second point on the graph of f , then the slope of the secant line
through these two points can be found using precalculus and is given
by

msec =
f (c + ∆x)− f (c)

c + ∆x − c
=

f (c + ∆x)− f (c)

∆x
.

As point Q approaches point P, the slopes of the secant lines
approach the slope of the tangent line, as shown in Figure 4b.
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(a) The secant line through (c, f (c))
and (c + ∆x , f (c + ∆x)).

(b) As Q approaches P, the secant
lines approach the tangent line.

Figure 4: The secant line and tangent line.
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The area problem

A second classic problem in calculus is finding the area of a plane
region that is bounded by the graphs of functions. This problem can
also be solved with a limit process.

In this case, the limit process is applied to the area of rectangles to find
the area of a general region.

As a simple example, consider the region bounded by the graph of the
function y = f (x), the x-axis, and the vertical lines x = a and x = b,
as shown in Figure 5.

Figure 5: Area under a curve.
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You can approximate the area of the region with several rectangular
regions as shown in Figure 6.

As you increase the number of rectangles, the approximation tends to
become better and better because the amount of area missed by the
rectangles decreases.

Your goal is to determine the limit of the sum of the areas of the
rectangles as the number of rectangles increases without bound.

(a) Approximation using four
rectangles.

(b) Approximation using eight
rectangles.

Figure 6: Approximation area under a curve using rectangles.
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Notes

In one of the most astounding events ever to occur in mathematics, it
was discovered that the tangent line problem and the area problem
are closely related.

lim∆x→0
f (c+∆x)−f (c)

∆x .

limn→∞
∑n

j=1 f (xj)∆xj .

This discovery led to the birth of calculus. You will learn about the
relationship between these two problems when you study the
Fundamental Theorem of Calculus in Chapter 4.
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An introduction to limits

Suppose you are asked to sketch the graph of the function f given by

f (x) =
x3 − 1

x − 1
, x 6= 1.

For all values other than x = 1, you can use standard curve-sketching
techniques.

However, at x = 1, it is not clear what to expect.

To get an idea of the behavior of the graph of f near x = 1, you can
use two sets of x-values—one set that approaches 1 from the left and
one set that approaches 1 from the right, as shown in the table.
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The graph of f is a parabola that has a gap at the point (1, 3).
Although x can not equal 1, you can move arbitrarily close to 1, and as
a result f (x) moves arbitrarily close to 3.
Using limit notation, you can write

lim
x→1

f (x) = 3.

This is read as “the limit of f (x) as x approaches 1 is 3.”

Figure 7: The limit of f (x) = x3−1
x−1 as x approaches 1 is 3.

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 17 / 101



This discussion leads to an informal definition of limit.

If f (x) becomes arbitrarily close to a single number L as x approaches
c from either side, the limit of f (x), as x approaches c , is L.

This limit is written as limx→c f (x) = L .
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Example 1 (Estimating a limit numerically)

Evaluate the function f (x) = x/(
√
x + 1− 1) at several points near x = 0

and use the results to estimate the limit

lim
x→0

x√
x + 1− 1

.

The table lists the values of f (x) for several x-values near 0.

From the results shown in the table, you can estimate the limit to be
2.

This limit is reinforced by the graph of f (see Figure 8.) �
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Figure 8: The limit of f (x) = x√
x+1−1

as x approaches 0 is 2.
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Example 2 (Finding a limit)

Find the limit of f (x) as x approaches 2, where f is defined as

f (x) =

{
1, x 6= 2

0, x = 2
.

Because f (x) = 1 for all x other than x = 2, you can conclude that
the limit is 1. So, you can write limx→2 f (x) = 1.

f (2) = 0 has no bearing on the existence or value of the limit as x
approaches 2.

For instance, if the function were defined as

f (x) =

{
1, x 6= 2

2, x = 2

the limit would be the same. �
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Limits that fail to exist

Example 3 (Behavior that differs from the right and from the left)

Show that the limit limx→0
|x |
x does not exist.

From Figure 9 and the definition of |x | you can see that

|x |
x

=

{
1, if x > 0

−1, if x < 0
.

This means that no matter how close x gets to 0, there will be both
positive and negative x-values that yield f (x) = 1 or f (x) = −1.

Specifically, if δ is a positive number, then for x-values satisfying the
inequality 0 < |x | < δ, you can classify the values of |x |/x as follows.
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Because |x |/x approaches a different number from the right side of 0
than it approaches from the left side, the limit limx→0 |x |/x does not
exist. �

Figure 9: limx→0
|x|
x does not exist.
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Example 4 (Unbounded behavior)

Discuss the existence of the limit limx→0
1
x2 .

Let f (x) = 1
x2 . In Figure 10, you can see that as x approaches 0 from

either the right or the left, f (x) increases without bound.

This means that by choosing x close enough to 0, you can force f (x)
to be as large as you want. For instance, f (x) will be larger than 100
if you choose x that is within 1/10 of 0. That is,

0 < |x | < 1

10
=⇒ f (x) =

1

x2
> 100.

Similarly, you can force f (x) to be larger than 1, 000, 000, as follows.

0 < |x | < 1

1000
=⇒ f (x) =

1

x2
> 1, 000, 000

Because f (x) is not approaching a real number L as x approaches 0,
you can conclude that the limit does not exist. �
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Figure 10: limx→0 1/x2 does not exist.
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Example 5 (Oscillating behavior)

Discuss the existence of the limit limx→0 sin 1
x .

Let f (x) = sin(1/x). You can see that as x approaches 0, f (x)
oscillates between −1 and 1.
So, the limit does not exist because no matter how small you choose
δ, it is possible to choose x1 and x2 within δ units of 0 such that
sin(1/x1) = 1 and sin(1/x2) = −1, as shown in the table. �

x 2/π 2/3π 2/5π 2/7π 2/9π 2/11π x → 0
sin(1/x) 1 −1 1 −1 1 −1 Limit does not exist.

Figure 11: limx→0 sin(1/x) does not exist.
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Common types of behavior associated with nonexistence of a limit

1 f (x) approaches a different number from the right side of c than it
approaches from the left side.

2 f (x) increases or decreases without bound as x approaches c .

3 f (x) oscillates between two fixed values as x approaches c.

There are many other interesting functions that have unusual limit
behavior. An often cited one is the Dirichlet function

f (x) =

{
0, if x is rational.

1, if x is irrational.

Because this function has no limit at any real number c , it is actually not
continuous at any real number c .
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A formal definition of limit

If f (x) becomes arbitrarily close to a single number L as x approaches
c from either side, then the limit of f (x) as x approaches c is L, is
written as

lim
x→c

f (x) = L.

At first glance, this definition looks fairly technical. Even so, it is
informal because exact meanings have not yet been given to the two
phrases “f (x) becomes arbitrarily close to L” and “x approaches c .”

In Figure 12, let ε represent a (small) positive number. Then the
phrase “f (x) becomes arbitrarily close to L” means that f (x) lies in
the interval (L− ε, L + ε). Using absolute value, you can write this as

|f (x)− L| < ε.
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Similarly, the phrase “x approaches c” means that there exists a
positive number δ such that x lies in either the interval (c − δ, c) or
the interval (c , c + δ). This fact can be concisely expressed by

0 < |x − c | < δ.

The first inequality 0 < |x − c | says that the distance between x and c
is more than 0 which expresses the fact that x 6= c . The second
inequality |x − c | < δ indicate that x is within δ units of c .

Figure 12: The ε-δ definition of the limit of f (x) as x approaches c .
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Definition 1.1 (Limit)

Let f be a function defined on an open interval containing c (except
possibly at c) and let L be a real number. The statement

lim
x→c

f (x) = L

means that for each ε > 0 there exists a δ > 0 such that if

0 < |x − c | < δ, then |f (x)− L| < ε.
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Example 6 (Finding a δ for a given ε, Hard)

Given the limit

lim
x→3

(2x − 5) = 1

find δ such that |(2x − 5)− 1| < 0.01 whenever 0 < |x − 3| < δ.

In this problem, you are working with a given value of ε-namely,
ε = 0.01. To find an appropriate δ, notice that

|(2x − 5)− 1| = |2x − 6| = 2|x − 3|.

Because the inequality |(2x − 5)− 1| < 0.01 is equivalent to
2|x − 3| < 0.01, you can choose δ = 1

2 (0.01) = 0.005.

This choice works because 0 < |x − 3| < 0.005 implies that

|(2x − 5)− 1| = 2|x − 3| < 2(0.005) = 0.01

as shown in Figure 13. �
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Figure 13: The limit of f (x) = 2x − 5 as x approaches 3 is 1.
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Example 7 (Using the ε-δ definition of limit, Hard)

Use the ε-δ definition of limit to prove that

lim
x→2

(3x − 2) = 4.

You must show that for each ε > 0, there exists a δ > 0 such that
|(3x − 2)− 4| < ε whenever 0 < |x − 2| < δ.
Because your choice of δ depends on ε, you need to establish a
connection between the absolute values |(3x − 2)− 4| and |x − 2|.

|(3x − 2)− 4| = |3x − 6| = 3 |x − 2| .

So, for a given ε > 0 you can choose δ = ε/3. This choice works
because

0 < |x − 2| < δ = ε/3

implies that

|(3x − 2)− 4| = 3 |x − 2| < 3
(ε

3

)
= ε.

�
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Example 8 (Using the ε-δ definition of limit, Hard)

Use the ε-δ definition of limit to prove that

lim
x→2

x2 = 4.

You must show that for each ε > 0, there exists a δ > 0 such that∣∣x2 − 4
∣∣ < ε whenever 0 < |x − 2| < δ.

To find an appropriate δ, begin by writing
∣∣x2 − 4

∣∣ = |x − 2| |x + 2|.
A useful technique is to first assume that δ ≤ 1. For all x in the
interval (1, 3), x + 2 < 5 and thus |x + 2| < 5.

So, letting δ be the minimum of ε/5 and 1, it follows that, whenever
0 < |x − 2| < δ, you have∣∣x2 − 4

∣∣ = |x − 2| |x + 2| <
(ε

5

)
(5) = ε.

�

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 34 / 101



Table of Contents

1 A preview of calculus

2 Finding limits graphically and numerically

3 Evaluating limits analytically

4 Continuity and one-sided limits

5 Infinite limits

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 35 / 101



Properties of limits

The limit of f (x) as x approaches c does not depend on the value of
f at x = c . It may happen, however, that the limit is precisely f (c).

In such cases, the limit can be evaluated by direct substitution. That
is,

lim
x→c

f (x) = f (c).

Such well-behaved functions are continuous at c .

Theorem 1.1 (Some basic limits)

Let b and c be real numbers and let n be a positive integer.
1. limx→c b = b
2. limx→c x = c
3. limx→c x

n = cn
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Example 1 (Evaluating basic limits)

a. limx→2 3 = 3 b. limx→−4 x = −4 c. limx→2 x
2 = 4 �

Theorem 1.2 (Properties of limits)

Let b and c be real numbers, let n be a positive integer, and let f and g
be functions with the following limits.

lim
x→c

f (x) = L and lim
x→c

g(x) = K

1. Scalar multiple: limx→c [bf (x)] = bL
2. Sum or difference: limx→c [f (x)± g(x)] = L± K
3. Product: limx→c [f (x)g(x)] = LK

4. Quotient: limx→c
f (x)
g(x) = L

K , provided K 6= 0

5. Power: limx→c [f (x)]n = Ln
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Theorem 1.3 (Limits of polynomial and rational functions)

If p is a polynomial function and c is a real number, then

lim
x→c

p(x) = p(c).

If r is a rational function given by r(x) = p(x)/q(x) and c is a real
number such that q(c) 6= 0, then

lim
x→c

r(x) = r(c) =
p(c)

q(c)
.

Example 2 (The limit of a polynomial)

Find the limit: limx→2(4x2 + 3).

By direct substitution:

lim
x→2

(4x2 + 3) = lim
x→2

4x2 + lim
x→2

3 = 4
(

lim
x→2

x2
)

+ lim
x→2

3

= 4(22) + 3 = 19 �
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Example 3 (The limit of a rational function)

Find the limit: limx→1
x2+x+2
x+1 .

Because the denominator is not 0 when x = 1, you can apply
Theorem 1.3 to obtain

lim
x→1

x2 + x + 2

x + 1
=

12 + 1 + 2

1 + 1
=

4

2
= 2. �

Theorem 1.4 (The limit of a function involving a radical)

Let n be a positive integer. The following limit is valid for all c if n is odd,
and is valid for c > 0 if n is even.

lim
x→c

n
√
x = n
√
c
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Theorem 1.5 (The limit of a composite function)

If f and g are functions such that limx→c g(x) = L and
limx→L f (x) = f (L), then

lim
x→c

f (g(x)) = f
(

lim
x→c

g(x)
)

= f (L).
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Example 4 (The limit of a composite function)

Find the limit.
a. limx→0

√
x2 + 4 b. limx→3

3
√

2x2 − 10

a. Because

lim
x→0

(x2 + 4) = 02 + 4 = 4 and lim
x→4

√
x =
√

4 = 2

if follows that

lim
x→0

√
x2 + 4 =

√
4 = 2.

b. Because

lim
x→3

(2x2 − 10) = 2(32)− 10 = 8 and lim
x→8

3
√
x =

3
√

8 = 2

if follows that

lim
x→3

3
√

2x2 − 10 =
3
√

8 = 2. �
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Theorem 1.6 (Limits of trigonometric functions)

Let c be a real number in the domain of the given trigonometric function.
1. limx→c sin x = sin c 2. limx→c cos x = cos c 3. limx→c tan x = tan c
4. limx→c cot x = cot c 5. limx→c sec x = sec c 6. limx→c csc x = csc c

Example 5 (Limits of trigonometric functions)

a. limx→0 tan x = tan(0) = 0
b. limx→π(x cos x) = (limx→π x) (limx→π cos x) = π cos(π) = −π
c. limx→0 sin2 x = limx→0(sin x)2 = 02 = 0 �
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A strategy for finding limits

Theorem 1.7 (Functions that agree at all but one point)

Let c be a real number and let f (x) = g(x) for all x 6= c in an open
interval containing c. If the limit of g(x) as x approaches c exists, then
the limit of f (x) also exists and

lim
x→c

f (x) = lim
x→c

g(x).
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Example 6 (Finding the limit of a function)

Find the limit: limx→1
x3−1
x−1 .

Let f (x) = (x3 − 1)/(x − 1).

By factoring and dividing out like factors, you can rewrite f as

f (x) =
(x − 1)(x2 + x + 1)

(x − 1)
= x2 + x + 1 = g(x), x 6= 1.

So, for all x-values other than x = 1, the functions f and g agree, as
shown in Figure 14.

Figure 14: f (x) = x3−1
x−1 , x 6= 1 and g(x) = x2 + x + 1 agree at all but one point.
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Because limx→1 g(x) exists, you can apply Theorem 1.7 to conclude
that f and g have the same limit at x = 1.

lim
x→1

x3 − 1

x − 1
= lim

x→1

x2 + x + 1

x − 1
= lim

x→1
(x2 + x + 1) = 12 + 1 + 1 = 3

�

A strategy for finding limits

1 Learn to recognize which limits can be evaluated by direct
substitution. (These limits are listed in Theorems 1.1 through 1.6.)

2 If the limit of f (x) as x approaches c cannot be evaluated by direct
substitution, try to find a function g that agrees with f for all x
other than x = c .

3 Apply Theorem 1.7 to conclude analytically that

lim
x→c

f (x) = lim
x→c

g(x) = g(c).

4 Use a graph or table to reinforce your conclusion.
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Dividing out and rationalizing techniques

Two techniques for finding limits analytically are shown in Examples 7
and 8.

The dividing out technique involves dividing out common factors, and
the rationalizing technique involves rationalizing the numerator of a
fractional expression.

Example 7 (Dividing out technique)

Find the limit: limx→−3
x2+x−6
x+3 .

Although you are taking the limit of a rational function, you cannot
apply Theorem 1.3 because the limit of the denominator is 0.

lim
x→−3

x2 + x − 6

x + 3

=⇒

{
limx→−3(x2 + x − 6) = 0

limx→−3(x + 3) = 0
Direct substitution fails
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Because the limit of the numerator is also 0, the numerator and
denominator have a common factor of (x + 3). So, for all x 6= −3,
you can divide out this factor to obtain

f (x) =
x2 + x − 6

x + 3
=

(x + 3)(x − 2)

x + 3
= x − 2 = g(x), x 6= −3.

Using Theorem 1.7, it follows that

lim
x→−3

x2 + x − 6

x + 3
= lim

x→−3
(x − 2) = −5. �

This result is shown graphically in Figure 15.

Figure 15: f (x) = x2+x−6
x+3 is undefined when x = −3.
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An expression such as 0/0 is called an indeterminate form because
you cannot (from the form alone) determine the limit. When you try
to evaluate a limit and encounter this form, remember that you must
rewrite the fraction so that the new denominator does not have 0 as
its limit.

One way to do this is to divide out like factors, as shown in
Example 7. A second way is to rationalize the numerator, as shown in
Example 8.

Example 8 (Rationalizing technique)

Find the limit: limx→0

√
x+1−1
x .

By direct substitution, you obtain the indeterminate form 0/0.

lim
x→0

√
x + 1− 1

x

=⇒

{
limx→0

(√
x + 1− 1

)
= 0

limx→0 x = 0
Direct substitution fails
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In this case, you can rewrite the fraction by rationalizing the numerator.
√
x + 1− 1

x
=

(√
x + 1− 1

x

)(√
x + 1 + 1√
x + 1 + 1

)
=

(x + 1)− 1

x
(√

x + 1 + 1
) =

1√
x + 1 + 1

, x 6= 0

lim
x→0

√
x + 1− 1

x
= lim

x→0

1√
x + 1 + 1

=
1

1 + 1
=

1

2

A table or a graph can reinforce your conclusion that the limit is 1
2 . �

Figure 16: The limit of f (x) =
√
x+1−1
x as x approaches 0 is 1

2 .

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 49 / 101



The next theorem concerns the limit of a function that is squeezed
between two other functions, each of which has the same limit at a
given x-value, as shown in Figure 17.

Figure 17: The Squeeze Theorem.
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The Squeeze Theorem

Theorem 1.8 (The Squeeze Theorem)

If h(x) ≤ f (x) ≤ g(x) for all x in an open interval containing c, except
possibly at c itself, and if

lim
x→c

h(x) = L = lim
x→c

g(x)

then limx→c f (x) exists and is equal to L.

Squeeze Theorem is also called the Sandwich Theorem or the
Pinching Theorem.
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Theorem 1.9 (Two special trigonometric limits)

1. limx→0
sin x
x = 1 2. limx→0

1−cos x
x = 0

1. The proof is presented using the variable θ, where θ is an acute
positive angle measured in radians. Figure 18 shows a circular sector
that is squeezed between two triangles.

Figure 18: A circular sector is used to prove Theorem 1.9.
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Area of triangle = tan θ
2 ≥ Area of sector = θ

2 ≥ Area of triangle = sin θ
2

Multiplying each expression by 2/ sin θ produces

1

cos θ
≥ θ

sin θ
≥ 1

and taking reciprocals and reversing the inequalities yields

cos θ ≤ sin θ

θ
≤ 1.

Because cos θ = cos(−θ) and (sin θ)/θ = [sin(−θ)]/(−θ), you can
conclude that this inequality is valid for all nonzero θ in the open
interval (−π/2, π/2).

Finally, because limθ→0 cos θ = 1 and limθ→0 1 = 1, you can apply the
Squeeze Theorem to conclude that limθ→0(sin θ)/θ = 1.

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 53 / 101



2.

lim
x→0

1− cos x

x
= lim

x→0

1− cos x

x
.
1 + cos x

1 + cos x

= lim
x→0

1− cos2 x

x(1 + cos x)
= lim

x→0

sin2 x

x(1 + cos x)

= lim
x→0

sin x

x
.

sin x

1 + cos x
=

[
lim
x→0

sin x

x

] [
lim
x→0

sin x

1 + cos x

]
= (1)(0) = 0.

�

Example 9 (A limit involving a trigonometric function)

Find the limit: limx→0
tan x
x .

Direct substitution yields the indeterminate form 0/0.
To solve this problem, you can write tan x as (sin x)/(cos x) and
obtain

lim
x→0

tan x

x
= lim

x→0

(
sin x

x

)(
1

cos x

)
.
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Now, because

lim
x→0

sin x

x
= 1 and lim

x→0

1

cos x
= 1

you can obtain (See Figure 19.)

lim
x→0

tan x

x
= lim

x→0

(
sin x

x

)(
1

cos x

)
= (1)(1) = 1. �

Figure 19: The limit of f (x) = tan x
x as x approaches 0 is 1.
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Example 10 (A limit involving a trigonometric function)

Find the limit: limx→0
sin 4x
x .

lim
x→0

sin 4x

x
= 4

(
lim
x→0

sin 4x

4x

)
= 4

(
lim
y→0

sin y

y

)
= 4(1) = 4 �
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Continuity at a point and on an open interval

The term continuous is to say that a function f is continuous at
x = c means that there is no interruption in the graph of f at c .
That is, its graph is unbroken at c and there are no holes, jumps, or
gaps. Figure 20 identifies three values of x at which the graph of f is
not continuous.

(a) (b) (c)

Figure 20: Three conditions the graph of f is not continuous at x = c .
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In Figure 20, it appears that continuity at x = c can be destroyed by
any one of the following conditions.

1 The function is not defined at x = c .
2 The limit of f (x) does not exist at x = c .
3 The limit of f (x) exists at x = c , but it is not equal to f (c).

If none of the three conditions above is true, the function f is called
continuous at c , as indicated in the following important definition.

Definition 1.2 (Continuity)

Continuity at a point: A function f is continuous at c if the following
three conditions are met.

1 f (c) is defined.

2 limx→c f (x) exists.

3 limx→c f (x) = f (c)

Continuity on an open interval: A function is continuous on an open
interval (a, b) if it is continuous at each point in the interval.
Continuity on R: A function that is continuous on the entire real line
(−∞,∞) is everywhere continuous.
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Consider an open interval I that contains a real number c . If a
function f is defined on I (except possibly at c), and f is not
continuous at c , then f is said to have a discontinuity at c .

Discontinuities fall into two categories: removable and nonremovable.

A discontinuity at c is called removable if f can be made continuous by
appropriately defining (or redefining f (c)).
For instance, the functions shown in Figures 20(a) and 20(c) have
removable discontinuities at c and the function shown in Figure 20(b)
has a nonremovable discontinuity at c .
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Example 1 (Continuity of a function)

Discuss the continuity of each function. a. f (x) = 1
x b. g(x) = x2−1

x−1

c. h(x) =

{
x + 1, x ≤ 0

x2 + 1, x > 0
d. y = sin x

a. The domain of f is all nonzero real numbers. From Theorem 1.3, you
can conclude that f is continuous at every x-value in its domain. At
x = 0, f has a non removable discontinuity In other words, there is no
way to define f (0) so as to make the function continuous at x = 0.

Figure 21: Nonremovable discontinuity of f (x) = 1
x at x = 0.
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b. The domain of g is all real numbers except x = 1. From
Theorem 1.3, you can conclude that g is continuous at every x-value
in its domain. At x = 1, the function has a removable discontinuity,
as shown in Figure 22. If g(1) is defined as 2, the “newly defined”
function is continuous for all real numbers.

Figure 22: Removable discontinuity of g(x) = x2−1
x−1 at x = 1.

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 62 / 101



c. The domain of h is all real numbers. The function h is continuous on
(−∞, 0) and (0,∞), and, because limx→0 h(x) = 1, h is continuous
on the entire real line, as shown in Figure 23.

Figure 23: h(x) = x + 1, if x ≤ 0 and x2 + 1, x > 0 is continuous on entire real
line.
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d. The domain of y is all real numbers. From Theorem 1.6, you can
conclude that the function is continuous on its entire domain,
(−∞,∞), as shown in Figure 24. �

Figure 24: y = sin x is continuous on entire real line.
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One-sided limits and continuity on a closed interval

To understand continuity on a closed interval, you first need to look
at a different type of limit called a one-sided limit.

For example, the limit from the right (or right-hand limit) means that
x approaches c from values greater than c [see Figure 25(a)].

(a) Limit from right. (b) Limit from left.

Figure 25: One-sided limits.

This limit is denoted as

lim
x→c+

f (x) = L. Limit from the right
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Similarly, the limit from the left (or left-hand limit) means that x
approaches c from values less than c [see Figure 25(b)].

This limit is denoted as

lim
x→c−

f (x) = L. Limit from the left

One-sided limits are useful in taking limits of functions involving
radicals.

For instance, if n is an even integer,

lim
x→0+

n
√
x = 0.
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Example 2 (A one-sided limit)

Find the limit of f (x) =
√

4− x2 as x approaches −2 from the right.

As shown in Figure 26, the limit as x approaches −2 from the right is

lim
x→−2+

√
4− x2 = 0. �

Figure 26: The limit of f (x) =
√

4− x2 as x approaches −2 from the right is 0.
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One-sided limits can be used to investigate the behavior of step
functions.

One common type of step function is the greatest integer function
bxc, defined by

bxc = greatest integer n such that n ≤ x .

For instance, b2.5c = 2 and b−2.5c = −3.

Example 3 (The greatest integer function)

Find the limit of f (x) = bxc as x approaches 0 from the left and from the
right.

lim
x→0−

bxc = −1

lim
x→0+

bxc = 0

�
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Theorem 1.10 (The existence of a limit)

Let f be a function and let c and L be real numbers. The limit of f (x) as
x approaches c is L if and only if

lim
x→c−

f (x) = L and lim
x→c+

f (x) = L.

Definition 1.3 (Continuity on a closed interval)

A function f is continuous on the closed interval [a, b] if it is continuous
on the open interval (a, b) and

lim
x→a+

f (x) = f (a) and lim
x→b−

f (x) = f (b).

The function f is continuous from the right at a and continuous from the
left at b (see Figure 27).
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Figure 27: Continuous function on a closed interval.

Example 4 (Continuity on a closed interval)

Discuss the continuity of f (x) =
√

1− x2.

The domain of f is the closed interval [−1, 1]. At all points in the
open interval (−1, 1), the continuity of f follows from Theorems 1.3
and 1.5.
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Moreover, because

lim
x→−1+

√
1− x2 = 0 = f (−1) Continuous from the right

and

lim
x→−1−

√
1− x2 = 0 = f (1) Continuous from the left

you can conclude that f is continuous on the closed interval [−1, 1],
as shown in Figure 28. �

Figure 28: f (x) =
√

1− x2 is continuous on [−1, 1].
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Example 5 (Charles’s Law and absolute zero)

On the Kelvin scale, absolute zero is the temperature 0 K. Although
temperatures very close to 0 K have been produced in laboratories,
absolute zero has never been attained. In fact, evidence suggests that
absolute zero cannot be attained. How did scientists determine that 0 K is
the ”lower limit” of the temperature of matter? What is absolute zero on
the Celsius scale?

To generate the values in the table, one mole of hydrogen is held at a
constant pressure of one atmosphere. The volume V is approximated
and is measured in liters, and the temperature T is measured in
degrees Celsius.

The points represented by the table are shown in Figure 29.
Moreover, by using the points in the table, you can determine that T
and V are related by the linear equation

V = 0.08213T + 22.4334 or T =
V − 22.4334

0.08213
.
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By reasoning that the volume of the gas can approach 0 (but can
never equal or go below 0), you can determine that the ”least possible
temperature” is given by

lim
V→0+

T = lim
V→0+

V − 22.4334

0.08213
=

0− 22.4334

0.08213
≈ −273.15.

So, absolute zero on the Kelvin scale (0 K) is approximately −273.15◦

on the Celsius scale. �
T −40 −20 0 20 40 60 80
V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

Figure 29: The volume of hydrogen gas depends on its temperature.
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Properties of continuity

Theorem 1.11 (Properties of continuity)

If b is a real number and f and g are continuous at x = c, then the
following functions are also continuous at c.

1 Scalar multiple: bf

2 Sum or difference: f ± g

3 Product: fg

4 Quotient: f
g , if g(c) 6= 0
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The following types of functions are continuous at every point in their
domains.

1 Polynomial: p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

2 Rational: r(x) = p(x)
q(x) , q(x) 6= 0

3 Radical: f (x) = n
√
x

4 Trigonometric: sin x , cos x , tan x , cot x , sec x , csc x

By combining Theorem 1.11 with this summary, you can conclude
that a wide variety of elementary functions are continuous at every
point in their domains.

Example 6 (Applying properties of continuity)

By Theorem 1.11, it follows that each of the functions below is continuous
at every point in its domain.

f (x) = x + sin x , f (x) = 3 tan x , f (x) =
x2 + 1

cos x
. �
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The next theorem, which is a consequence of Theorem 1.5, allows you
to determine the continuity of composite functions such as

f (x) = sin 3x , f (x) =
√
x2 + 1, f (x) = tan

1

x
.

Theorem 1.12 (Continuity of a composite function)

If g is continuous at c and f is continuous at g(c), then the composite
function given by (f ◦ g)(x) = f (g(x)) is continuous at c.

By the definition of continuity, limx→c g(x) = g(c) and
limx→g(c) = f (g(c)).

Apply Theorem 1.5 with L = g(c) to obtain
limx→c f (g(x)) = f (limx→c g(x)) = f (g(c)). So, (f ◦ g) = f (g(x)) is
continuous at c . �
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Example 7 (Testing for continuity)

Describe the interval(s) on which each function is continuous.

a. f (x) = tan x b. g(x) =

{
sin 1

x , x 6= 0

0, x = 0

c. h(x) =

{
x sin 1

x , x 6= 0

0, x = 0

a. The tangent function f (x) = tan x is undefined at

x =
π

2
+ nπ, n is an integer.

At all other points it is continuous.

So, f (x) = tan x is continuous on the open intervals

. . . ,

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,

3π

2

)
, . . .

as shown below.
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b. Because y = 1/x is continuous except at x = 0 and the sine function
is continuous for all real values of x , it follows that y = sin(1/x) is
continuous at all real values except x = 0. At x = 0, the limit of g(x)
does not exist. So, g is continuous on the intervals (−∞, 0) and
(0,∞) as shown below.
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c. This function is similar to the function in part (b) except that the
oscillations are damped by the factor x .
Using the Squeeze Theorem, you obtain

−|x | ≤ x sin
1

x
≤ |x |, x 6= 0

and you can conclude that

lim
x→0

h(x) = 0.

So, h is continuous on the entire real line, as shown in Figure 30. �

Figure 30: h is continuous on the entire real line.
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The Intermediate Value Theorem

A theorem verifying that the graph of a continuous function is connected.

Theorem 1.13 (The Intermediate Value Theorem)

If f is continuous on the closed interval [a, b], f (a) 6= f (b), and k is any
number between f (a) and f (b), then there is at least one number c in
[a, b] such that

f (c) = k .

The Intermediate Value Theorem tells you that at least one number c
exists, but it does not provide a method for finding c . Such theorems
are called existence theorems. A proof of this theorem is based on a
property of real numbers called completeness.

The Intermediate Value Theorem states that for a continuous
function f , if x takes on all values between a and b, f (x) must take
on all values between f (a) and f (b).
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Suppose that a girl is 160 centimeters tall on her thirteenth birthday
and 165 centimeters tall on her fourteenth birthday. Then, for any
height h between 160 centimeters and 165 centimeters, there must
have been a time t when her height was exactly h. This seems
reasonable because human growth is continuous and a person’s height
does not abruptly change from one value to another.
The Intermediate Value Theorem guarantees the existence of at least
one number c in the closed interval [a, b]. There may, of course, be
more than one number c such that f (c) = k , as shown in Figure 31.

Figure 31: Intermediate Value Theorem: f is continuous on [a, b]. (There exists
three c ’s such that f (c) = k .)
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A function that is not continuous does not necessarily exhibit the
intermediate value property.
For example, the graph of the function shown in Figure 32 jumps over
the horizontal line given by y = k , and for this function there is no
value of c in [a, b] such that f (c) = k .
The Intermediate Value Theorem often can be used to locate the
zeros of a function that is continuous on a closed interval.
Specifically, if f is continuous on [a, b] and f (a) and f (b) differ in
sign, the Intermediate Value Theorem guarantees the existence of at
least one zero of f in the closed interval [a, b].

Figure 32: f is not continuous on [a, b].
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Example 8 (An application of the Intermediate Value Theorem)

Use the Intermediate Value Theorem to show that the polynomial function
f (x) = x3 + 2x − 1 has a zero in the interval [0, 1].

Note that f is continuous on the closed interval [0, 1]. Because

f (0) = 03 + 2(0)− 1 = −1 and f (1) = 13 + 2(1)− 1 = 2

it follows that f (0) < 0 and f (1) > 0. You can therefore conclude
that there must be some c in [0, 1] such that f (c) = 0 �

Figure 33: f is continuous on [0, 1] with f (0) < 0 and f (1) > 0.
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The Bisection Method for approximating the real zeros of a
continuous function is similar to the method used in Example 8.

If you know that a zero exists in the closed interval [a, b], the zero
must lie in the interval [a, (a + b)/2] or [(a + b)/2, b].

From the sign of f ([a + b]/2), you can determine which interval
contains the zero.

By repeatedly bisecting the interval, you can “close in” on the zero of
the function.

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 84 / 101



Table of Contents

1 A preview of calculus

2 Finding limits graphically and numerically

3 Evaluating limits analytically

4 Continuity and one-sided limits

5 Infinite limits

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 85 / 101



Infinite limits

Let f be the function given by 3/(x − 2). From Figure 34 and the
table, you can see that f (x) decreases without bound as x approaches
2 from the left, and f (x) increases without bound as x approaches 2
from the right.

Figure 34: f (x) = 3
x−2 increases and decreases without bound as x approaches 2.
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This behavior is denoted as

lim
x→2−

3

x − 2
= −∞

f (x) decreases without bound as x approaches 2 from the left

and

lim
x→2+

3

x − 2
=∞

f (x) increases without bound as x approaches 2 from the right

A limit in which f (x) increases or decreases without bound as x
approaches c is called an infinite limit.
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Definition 1.4 (Infinite limit)

Let f be a function that is defined at every real number in some open
interval containing c (except possibly at c itself). The statement

lim
x→c

f (x) =∞

means that for each M > 0 there exists a δ > 0 such that f (x) > M
whenever 0 < |x − c | < δ (see Figure 35). Similarly, the statement

lim
x→c

f (x) = −∞

means that for each N < 0 there exists a δ > 0 such that f (x) < N
whenever 0 < |x − c | < δ.
To define the infinite limit from the left, replace 0 < |x − c | < δ by
c − δ < x < c . To define the infinite limit from the right, replace
0 < |x − c | < δ by c < x < c + δ.
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Figure 35: Infinite limits.

Example 1 (Determining infinite limits from a graph)

Determine the limit of each function shown in Figure 36 as x approaches 1
from the left and from the right.
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Figure 36: f (x) = 1
(x−1)2 and f (x) = −1

x−1 have an asymptote at x = 1.

(a) When x approaches 1 from the left or the right, (x − 1)2 is a small
positive number. Thus, the quotient 1

(x−1)2 is a large positive number

and f (x) approaches infinity from each side of x = 1. So, you can
conclude that

lim
x→1

1

(x − 1)2
=∞. Limit from each side is infinity

Szu-Chi Chung (NSYSU) Chapter 1: Limits and Their Properties September 25, 2021 90 / 101



(b) When x approaches 1 from the left, x − 1 is a small negative number.

Thus, the quotient −1
(x−1) is a large positive number and f (x)

approaches infinity from left of x = 1.

So, you can conclude that

lim
x→1−

−1

(x − 1)
=∞. Limit from the left side is infinity

When x approaches 1 from the right, x − 1 is a small positive number.

Thus, the quotient −1
(x−1) is a large negative number and f (x)

approaches negative infinity from the right of x = 1.

So, you can conclude that

lim
x→1+

−1

(x − 1)
= −∞. Limit from the right side is negative infinity

�
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Vertical asymptotes

Definition 1.5 (Vertical asymptote)

If f (x) approaches infinity (or negative infinity) as x approaches c from
the right or the left, then the line x = c is a vertical asymptote of the
graph of f .

Theorem 1.14 (Vertical asymptotes)

Let f and g be continuous on an open interval containing c. If f (c) 6= 0,
g(c) = 0, and there exists an open interval containing c such that
g(x) 6= 0 for all x 6= c in the interval, then the graph of the function given
by

h(x) =
f (x)

g(x)

has a vertical asymptote at x = c.
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Example 2 (Find vertical asymptotes)

Determine all vertical asymptotes of the graph of each function. a.
f (x) = 1

2(x+1) b. f (x) = x2+1
x2−1

c. f (x) = cot x

a. When x = −1, the denominator of f (x) = 1
2(x+1) is 0 and the

numerator is not 0.
So, by Theorem 1.14, you can conclude that x = −1 is a vertical
asymptote, as shown in Figure 37.

Figure 37: f (x) = 1
2(x+1) has an asymptote at x = −1.
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b. By factoring the denominator as

f (x) =
x2 + 1

x2 − 1
=

x2 + 1

(x − 1)(x + 1)

you can see that the denominator is 0 at x = −1 and x = 1.

Moreover, because the numerator is not 0 at these two points, you
can apply Theorem 1.14 to conclude that the graph of f has two
vertical asymptotes, as shown in Figure 38.

Figure 38: f (x) = x2+1
x2−1 has vertical asymptotes at x = ±1.
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c. By writing the cotangent function in the form

f (x) = cot x =
cos x

sin x

you can apply Theorem 1.14 to conclude that vertical asymptotes
occur at all values of x such that sin x = 0 and cos x 6= 0, as shown in
Figure 39.

So, the graph of this function has infinitely many vertical asymptotes.
These asymptotes occur at x = nπ, where n is an integer. �

Figure 39: f (x) = cot x has vertical asymptotes at x = nπ, n ∈ Z.
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Theorem 1.14 requires that the value of the numerator at x = c be
nonzero. If both the numerator and the denominator are 0 at x = c ,
you obtain the indeterminate form 0/0, and you cannot determine the
limit behavior at x = c without further investigation, as illustrated in
Example 3.

Example 3 (A rational function with common factors)

Determine all vertical asymptotes of the graph of

h(x) =
x2 + 2x − 8

x2 − 4
.

Begin by simplifying the expression, as shown

h(x) =
x2 + 2x − 8

x2 − 4
=

(x + 4)(x − 2)

(x + 2)(x − 2)
=

x + 4

x + 2
, x 6= 2.

At all x-values other than x = 2, the graph of h coincides with the
graph of k(x) = (x + 4)/(x + 2).
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So, you can apply Theorem 1.14 to k to conclude that there is a
vertical asymptote at x = −2, as shown in Figure 40.

From the graph, you can see that

lim
x→−2−

x2 + 2x − 8

x2 − 4
= −∞ and lim

x→−2−

x2 + 2x − 8

x2 − 4
=∞. �

Note that x = 2 is not a vertical asymptote.

Figure 40: A rational function with common factors.
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Example 4 (Determining infinite limits)

Find each limit

lim
x→1−

x2 − 3x

x − 1
and lim

x→1+

x2 − 3x

x − 1
.

lim
x→1−

x2 − 3x

x − 1
=∞

lim
x→1+

x2 − 3x

x − 1
= −∞ �
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Theorem 1.15 (Properties of infinite limits)

Let c and L be real numbers and let f and g be functions such that

lim
x→c

f (x) =∞ and lim
x→c

g(x) = L.

1 Sum or difference: limx→c [f (x)± g(x)] =∞
2 Product:

lim
x→c

[f (x)g(x)] =∞, L > 0

lim
x→c

[f (x)g(x)] = −∞, L < 0

3 Quotient: limx→c
g(x)
f (x) = 0

Similar properties hold for one-sided limits and for functions for which the
limit of f (x) as x approaches c is −∞.
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1. To show that the limit of f (x) + g(x) is infinite, choose M > 0. You
then need to find δ > 0 such that

[f (x) + g(x)] > M

whenever 0 < |x − c | < δ.

For simplicity’s sake, you can assume L is positive. Let M1 = M + 1.
Because the limit of f (x) is infinite, there exists δ1 such that
f (x) > M1 whenever 0 < |x − c | < δ1.

Also, because the limit of g(x) is L, there exists δ2 such that
|g(x)− L| < 1 whenever 0 < |x − c| < δ2.

By letting δ be the smaller of δ1 and δ2, you can conclude that
0 < |x − c | < δ implies f (x) > M + 1 and |g(x)− L| < 1.

The second of these two inequalities implies that g(x) > L− 1, and,
adding this to the first inequality, you can write

f (x) + g(x) > (M + 1) + (L− 1) = M + L > M.

So, you can conclude that

lim
x→c

[f (x) + g(x)] =∞.
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Example 5 (Determining limits)

a. Because limx→0 1 = 1 and limx→0
1
x2 =∞, you can write

lim
x→0

(
1 +

1

x2

)
=∞. Property1,Theorem 1.15

b. Because limx→1−(x2 + 1) = 2 and limx→1−(cotπx) = −∞, you can
write

lim
x→1−

x2 + 1

cotπx
= 0. Property3,Theorem 1.15

c. Because limx→0+ 3 = 3 and limx→0+ cot x =∞, you can write

lim
x→0+

3 cot x =∞. Property2,Theorem 1.15

d. Because limx→0− x2 = 0 and limx→0−
1
x = −∞, you can write

lim
x→0−

(
x2 +

1

x

)
= −∞. Property1,Theorem 1.15 �
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